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1 Introduction. Aims and
definitions

Despite numerous experimental and theoretical at-
tempts to understand the forces shaping the age-
specific human mortality curve at late ages many
problems remain unsolved. Numerous explanations
based on the concept of heterogeneity in mortality,
individual adaptation, hormesis or on some general
properties of complex multistage dynamic systems
sometimes contradict each other (see [1] and [2] for
review). Using only population survival data re-
stricts analysis to simple mortality (time to failure)
models.

Additionally, theoretical insights on human fail-
ure processes runs into difficulty based on new find-
ings from experimental and population studies. The
Gompertz hazard generally does not fit well in hu-
man populations at later ages ([3, 4, 5]). Even mod-
els which assume that the aging parameters are spe-
cific to individuals sometimes runs into difficulty
when attempting to interpret parameter values as
biologically meaningful, e.g., use of a gamma or in-
verse Gaussian mixed Gompertz ([6]). For exam-

ple, longitudinal studies clearly show that the risk
heterogeneity of a population is altered over time
by behavioral factors and environmental exposures.
Thus, while a continuously mixed mortality model is
an empirical enhancement over the standard Gom-
pertz when explaining the distribution of time to
death it is clearly only an improved approximation
when individual physiological states are clearly ob-
served to change over time. Also relevant are recent
observation on the fundamental processes of senes-
cence. For example, an analysis based on the logic of
the thermodynamics of protein denaturation lead-
ing to organism death leads to a Weibull hazard -
and very different estimates of physiological inter-
pretations of model parameters (e.g., [7, 8]). For
a long time a dominant view on cellular limits to
human longevity were based on the arguments of
Hayflick ([9]), Martin ([10]) found that there were
factors influencing those processes in that cells cul-
tured from persons aged 30 to 80 show a much
slower process of senescence than suggested by ob-
served human longevity. Cristofalo et al. ([11]) went
further and found that, in healthy individuals there
was no apparent loss of replicability in some cell
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lines. This suggested that it was invalid to view hu-
man longevity as a static property of a physically
closed system. This suggested the need for stochas-
tic state space models estimated from longitudinally
followed population. It was also clear that for pop-
ulation forecasts of health to be accurate both the
internal structures of humans, and exogenous inputs
to those systems, had to be better described.

More data are needed to estimate theoretically
satisfactory models of human aging and mortal-
ity. Many existing longitudinal and epidemiological
studies and national longitudinal surveys contain
information necessary for a better understanding
of the regularities of state dependent mortality dy-
namics. By measuring age-related changes in health
and physiological covariates together with life span
these studies open up new opportunities for ana-
lyzing the dynamics of aging process and mortality
with appropriate models.

Unfortunately those data are often under ana-
lyzed which has led to the generation of erroneous
conclusions about human health and how to im-
prove it. Use of the multiple logistic and Cox re-
gression model do not fully utilize the information
in the stochastic dynamics of the risk factors. For
example, models looking at relative risks understate
often the absolute importance of risk factors at ad-
vanced ages. More important is that the dynamics
and interactions of risk factors are often erroneously
described. For example, in analyses of the Fram-
ingham Heart Study data with a quadratic haz-
ard it was not possible to exclude ”optimal” val-
ues of serum cholesterol up to 210 or 220 mg/dl.
This is consistent with the observations that the sci-
ence of blood lipids is more complex than acknowl-
edged in the original epidemiological analyses with
many lipid subtypes, including healthy types, iden-
tified. Recent observations have suggested many di-
etary recommendation surrounding fat and carbo-
hydrate intake needed to be complete re-evaluated
and that many other risk factors, such as homocys-
teine ([12, 13]), are important. Also important for
state space models is that there appeared to be a
small number of fundamental processes underlying
many disease states, e.g., lipid metabolism for cir-
culatory disease, cancer and Alzheimer’s; oxidative

mechanisms for carcinogenesis, heart disease and
Alzheimer’s. As a consequence, we propose the use
of a state space model based on an individual ran-
dom walk.

In this report we improve the classical random
walk model (RWM) [14, 15, 16] to make practical
predictions and forecast using longitudinal data on
human health. Developing a useful software package
for such effects has to deal with:

• analysis of longitudinal data bases;

• construction of models describing these data
bases;

• developing a numerical scheme for parameter
estimation;

• forecasting with this model using estimated pa-
rameters.

In Section 2 of the report we make short survey
of the mathematical formalisms of the RWM and
rewrite formulas in a form suitable for numerical
analysis. We describe the Framingham Heart Study
data base and subsets of these data which are used
in our analysis. Numerical results based on the for-
mulas are in Section 3. Problems with missing data,
and its central role in analyses, are discussed there.
An alternate approach based on stochastic process
models (see review [17]) is considered in Section 4.
Generalizations to include non-linear dynamic and
chaotic effects are discussed in Section 5. Final com-
ments and conclusions are in Section 6.

2 Random walk model

It is possible to model the time to failure (death)
of an organism using a random walk model with
”manholes”. The stochastic differential equations
for this random walk are for state dynamics,

dxw(t) = u(xw, t)dt + dξ(xw, t),

and the state dependent distribution of ”manholes”,

dP (xw) = −µ(xw, t)P (xw)dt
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First equation represents changes for organism w
on each of J coordinate dimensions, x = (xj , j =
1, 2, ..., J) at time t. Movement dxw(t) of individ-
ual w during a time dt is the sum of deterministic
u(xw, t)dt and random walk dξ(xw, t) contributions.
P (xw) is the probability of surviving for w at the
point xw for time t. The change of survival probabil-
ity dP (xw) is proportional to the probability of mor-
tality µ(xw, t)dt. The meaning of parameters, and
state space dimensionality, are usually defined by
experimental longitudinal data of parameters used
in analyses.

The Framingham Heart Study is an example of a
longitudinal data base, where detailed medical char-
acteristics of individuals are measured at approxi-
mately equal time intervals between measurements.
The original Framingham Heart Study cohort con-
sisted of respondents of a random sample of 2/3 of
adults, 30 to 62 years of age, residing in Framing-
ham, Massachusetts in 1948. Of the original 5209
persons, there are approximately 1095 known alive
as of February 1998. There are, in the data set avail-
able to us, 23 two-year follow-ups 1948 to 1998. We
used 11 risk factors [18]: age, pulse pressure, dias-
tolic blood pressure, serum cholesterol, blood glu-
cose, hematocrit, vital capacity index, smoking, left
ventricular hypertrophy, pulse rate.

It is possible to reformulate the RWM model
in terms of the Kolmogorov-Fokker-Planck (KFP)
equation [19]

∂f

∂t
= −

∑

j

uj
∂f

∂xj
− f

∑

j

∂uj

∂xj

+
1
2

∑

i

∑

j

σ0
ij

∂2f

∂xjxj
− µf

In this form the task of describing collective pop-
ulation movement over the state space is reduced
to a task of describing one person making random
walks averaged over other individuals in the pop-
ulation. The first term corresponds to the ”drift”
u of mean values during these random walks. This
drift can be x-dependent – that is reflected in the
second term. The third term takes into account dif-
fusion σ0. The last term corresponds to mortality.

It changes the normalization of the multivariate dis-
tribution function over time.

One way to solve the KFP equation is to make
additional assumptions which reduce to the assump-
tion that the population distribution can be de-
scribed at time t as a multivariate normal distribu-
tion N(lt, νt, Vt), whose three parameters represent
the population size (lt), the vector of physiologi-
cal variable means (νt), and the variance-covariance
matrix (Vt). We also need to make assumptions
about the linear model for the dynamic risk fac-
tor variables over time. Here two possible models
are considered. The first is based on the assump-
tion that only the current year information influ-
ences the risk factors of next year exam. The two-
year model takes into account memory effect, next
exam risk factors are defined by two previous ex-
ams. The basic model assumes that initial value
of vector of physiological variables is normally dis-
tributed, the dynamics are linear and the hazard
function is quadratic:

µ =
(

µ0 + bx +
1
2
xT Bx

)
eθt (1)

where model parameters are µ0, b (J-vector) and B
(J×J-matrix); eθt is an exponential term reflecting
unmeasured state variables correlated with age.

Regression formula for one-year model is

xt+1 = u0 + Rxt + ε, (2)

where vector u0 and matrix R are model parameters
and ε is a vector of residials. The following formulas
are used to adjust the distribution for mortality:

ν∗t = νt − V ∗
t (bt + Btνt)

V ∗
t = (V −1

t + Bt)−1.

And also
Vt+1 = Σ + RV ∗

t RT ,

where Σ is variance-covariance matrix of residuals.
Hazard parameters b,B in these formulas are in-
cluded in the definition of the mortality model [20].

Similarly for two-year model we have

xt+1 = u0 + Rxt + Txt−1 + ε,

Vt+1 = Σ + RV ∗
t RT + TV ∗∗

t−1T
T .
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Quantities with two stars are characteristics of nor-
mal distributions for individuals surviving two time
periods:

ν∗∗t = ν∗t − V ∗∗
t (bt−1 + Bt−1ν

∗
t ),

V ∗∗
t = (V ∗ −1

t + Bt−1)−1.

In the both models, values of age should be fixed.
In this case the Gaussian distribution will be con-
ditional on age. It amounts to changing matrices V
and Σ to (k = age)

V c
ij = Vij − VikVkj

Vkk
,

Σc
ij = Σij − ΣikΣkj

Σkk

Hazard parameters βij in the quadratic function
are estimated with maximum likelihood procedures.
Vector b, µ0 and matrix B (see Eq. (1)) are related
to the hazard coefficients as,

µ0 = β2
00 bi = β00β0i, Bik =

K∑

j=0

βjkβji.

where K = min(i, j, ir − 1). ir defines a number of
parameters βjk. We take ir = 4 for Framingham
data.

The (log) likelihood can be expressed in the fol-
lowing form

L = −Lr +
I∑

i=1

ln(eµi − 1)

where i runs over individuals (i = 1, 2, ..., I),

µi =
ir−1∑

j=0

J∑

l=j

J∑

m=j

βjlβjmξliξmi,

Lr =
ir−1∑

j=0

J∑

l=j

J∑

m=j

βjlβjmrlm,

rlm =
I∑

i=1

x̄lix̄mi

Here x̄ji = Axji and A is a age-dependent factor
defined by a model. ξli = x̄ji for last survey before
death and ξli = 0 otherwise (see [20] for details).

3 Numerical results

3.1 Missing data

The database has extensive missing data. Addi-
tional assumptions are required to fill those values
before estimating the model. One way is to use
the following procedure: if a value between mea-
surements is missed then it is calculated as the av-
erage proportional (for example, 20-missed-missed-
80 produces 20-40-60-80); however if there are data
only from one side (20-missed-missed) then missing
values are set equal to the nearest measure: (20-20-
20). This is so called ”simple mean value” method
of filling missing data.

Another method - ”deterministic” - at the first
stage uses the results of the procedure above. It
allows us to calculate an initial regression model
for the data. Predictions of the model are used to
fill in missing data. We truncate predicted values
for data points with extreme residuals with devi-
ation 3σ. Since changing the data changes the re-
gression coefficients, this procedure is repeated until
there are no coefficient changes for the current itera-
tion. This procedure makes the generated database
model-dependent.

Residuals for one of the risk factor variables are
in Figure 1. The distribution is Gaussian with a
large peak for ε = 0. This is a result of our proce-
dure to fill missing data, when all missing data were
changed to their predicted values with ε = 0. We
see that the procedure is not statistical but deter-
ministic.

One solution to this problem is to use Monte-
Carlo simulation of deviations from theoretically
predicted values generated in accordance with a
Gaussian distribution with observed σ. In this case
and for one-year model missing data are simulated
using,

xt+1 = u0 + Rxt + ε

with ε’s simulated as a Gaussian distributed with
observed σ. In this case ε’s have the correct distri-
bution and this peak disappears. One theoretical
issue to evaluate is whether the innovation term ε
is viewed or generated by sampling or whether it is
viewed or generated by stochastic factors.
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FIG. 1. Residuals for x3 diastolic blood pressure within different approaches for filling missing data.

Using formulas from the previous section one can
predict behavior of risk factor versus age for starting
data. Results for projections of some risk factors
and life expectancy are presented in Figures 2, 3
and 4.

4 An approach based on
diffusion type stochastic
differential equations

An alternate approach to make projections is de-
scribed in [17]. It has several advantages compared
to classical RWM. All parameters are defined within
a joint likelihood function, so only one numerical
procedure is needed to estimate both dynamic and
mortality parameters. Within this approach it is
not necessary to use ancillary procedures to fill in
missing data. The projection is obtained as an ex-
plicit solution of differential equations, so the times
between surveys are not fixed. Therefore, it is possi-
ble to make predictions in a ’year by year’ or ’month
by month’ scheme.

4.1 The model

Similar to the Random Walk Model described
above, this model is defined by a system of stochas-
tic differential equations. It is assumed, as above,
that mortality is a quadratic function of x(t)

µ(x(t), t) = µ0(t) + 2b(t)x(t) + x∗(t)B(t)x(t)

dx(t) = (a0(t) + a1(t)x(t))dt + a2(t)dWt

For a Gaussian process the likelihood can be writ-
ten,

L =
N∏

i=1

µ̂(τi, x̂(τi))δi exp


−

τi∫

0

duµ̂(u, x̂i(u))




×
ki∏

j=1

f(xi(tj)|x̂i(tj−1)); (3)

where f(xi(tj)|x̂i(tj−1)) is a Gaussian density dis-
tribution conditional on prior observations, τi are
ages of death, deltai are indicators of sensoring, tj
are observation times, x̂i(tj) are discrete time ob-
servations. Indexes i and j run a.) over individual
in data base and b.) exams of each individual, re-
spectively. The equation,

µ̂(x̂(t), t) = m∗(t)B(t)m(t) + 2b(t)m(t)

+tr(B(t)γ(t)) + µ0(t),

has the sense of a right-continuous mortality rate.
Vector m(t) and matrix γ(t) are defined by sys-

tem of ordinary differential equations at intervals
[tj , tj+1)

dm(t)
dt

= a0(t) + (a1(t)− 2b(t))m(t)

−2γ(t)B(t)m(t)
dγ(t)

dt
= a1(t)γ(t) + γ(t)a∗1(t) + a2(t)a∗2(t)

−2γ(t)B(t)γ(t). (4)
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FIG. 2. Data and predictions for one-year (open circles,
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for diastolic blood pressure (x3)

FIG. 3. Data and predictions for one-year(open circles,
dashed line) and two-year (full circles, solid line) models
for hematocrit (x7)
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FIG. 5. Simulated data (circles) and projection (line)
for diastolic blood pressure

with bound conditions m(tj) = x̂(tj), γ(tj) = 0.
Specific assumptions about the explicit form of time
dependence of the functions a0,1,2(t), b(t) and B(t)
have to be made. For example, it is reasonable to
assume a Gompertz dependence for the hazard pa-
rameters.

4.2 Life Time Generator

Our first test is the analysis of simulated data and
extraction of coefficients, which were used for sim-
ulation. Set of stochastic differential equations and
assumptions about a Gaussian distribution give us
the opportunity to develop a simulation strategy.
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Constructed in this way the generator can be asso-
ciated with a generator of life, because it reproduces
all features of a cohort life span.

The strategy can be defined in several steps. First
the theoretical cohort (i.e. 100,000 individuals with
normally distributed risk factors) is simulated. For
simplicity all individuals can be taken at the same
age. However the initial risk factor values have to be
normally distributed. Mortality and survival func-
tions are calculated for each individual at each time
interval. It allows us to define randomly if an indi-
vidual survives in the time interval or not. For indi-
viduals surviving for time spot τ , risk factor values
are simulated for next age period as,

x(t + τ) = x(t) + D1τ +
√

D2τξr

D1 = a0(t) + a1(t)x(t), D2 = a2(t)a∗2(t)

This procedure can solve many tasks for life ta-
ble construction as well as provide numerical and
analytical tests of our computational procedures.

4.3 Numerical and analytical tests

A simulated data base can be used for parameter
estimations. As a result of maximization of the
likelihood one obtains parameters for the functions
(a0,1,2(t), µ0(t), b(t) and B(t)) for simulation. Re-
sults for these coefficients can be used for projec-
tions (see Figure 5).

Analytic tests can be done for the simplified (b =
0, B = 0, a1 = 0) one-dimensional model:

µ = µ0e
θt, dx = a0dt + a2dW

The system of differential equations (4) can be
solved analytically,

m(t) = m(t0) + (t− t0)a0 γ(t) = (t− t0)a2
2,

Integration in (3) can be also done analytically,

τi∫

0

dt µ0 eθt =
µ0

θ
(eθτi − 1)

The likelihood function (3) can be split into two
terms

L =
∑

i

[ln(µ0e
θτi)− µ0

θ
(eθτi − 1)]

−1
2

∑

ij

[
ln γ +

(∆x− a0y)2

γ

]
(5)

where y is the time interval between simulated risk
factor values for an individual and ∆x = xnext−x is
simulated difference of risk factors; τi is the failure
time. We assume that all individuals in the cohort
finally die.

The maximization of (5) can be performed ana-
lytically. The first term gives

µ0 =
Iθ∑

i exp(θτi)− 1
. (6)

The second leads to,

a0 =
∑

∆x

yIJ
(7)

a2
2 =

1
∆tIJ

(∑
(∆x)2 − (

∑
∆x)2

)
.

I and J are numbers of individuals and risk factors,
respectively.

Equations (6) and (7) give estimates of param-
eters in terms of sums of the simulated quantities:
τi and ∆x. Sums can be calculated analytically for
simulated data using simulation (see Section 4.2).
The estimates must give exactly our initial param-
eters µ0 and a0,2. If so, it provides an analytical
test of the model. The following calculation demon-
strates this.

The cohort population function l(t), being the
solution of the differential equation dl/dt = −µl,
has the form,

l(t) = l0 exp
(
−µ0

θ
(eθt − 1)

)

Parameter µ0 in (6) can be written as µ0 =
θ/〈g(t)〉, with g(t) = exp(θt) − 1. Averaging in ac-
cordance with

1
I

∑

i

[eθτi−1] = 〈eθt−1〉 =
1
l0

∞∫

0

d[eθt−1] l(t) =
θ

µ0
.
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That confirms the estimate of µ0 (6).
Sums in (7) can be estimated from the generation

which is reduced for our case,

∆x = a0∆t + a2
√

yξr,

where ξr are standardized normally distributed
numbers. They are

∆x = a0yIJ ∆x2 = IJ(a0y
2 + a2

2y)

From them one immediately has (7).

5 Non-linear effects

The model was constructed for the Gaussian dis-
tribution and Gaussian processes. The dynamic
regression model was assumed to be linear. How-
ever there exist experimental observations in the
Framingham pointing to possible non-linear effects:
hormesis effects and oscillations in mortality rates
[1] as well as deviations in elderly populations (for
ages > 75 years).

A resistance or regeneration effect leads to the
following generalization of the death process:

N t+1 =
(

ηt(x)− µt(x)
)

N,

where η is a new variable which is time and risk
factor dependent:

ηt+1(x) = Fη(ηt, xt), µt+1(x) = Fµ(µt, xt).

The function η should also be included in equa-
tions, to provide the necessary feedback,

x
(t+1)
i = u0

i +
∑

j

Rijx
(t)
j +

∑

j,k

Cijkx
(t)
j x

(t)
k +

+
∑

j

F
(t)
ij x

(t)
j +

∑

j

P
(t)
ij η

(t)
j + εi

This formula is non-linear generalization of one-
year model (2). Coefficients Cijk should be esti-
mated from data. The deterministic part is control-
lable with control accomplished either by adjust-
ing system control parameters or by chaos control-
ling strategies [21]. F t

ij is a matrix with, generally,

time dependent coefficients, determined by control-
ling strategies. Pij are generally, non-linear func-
tions of x.

6 Summary

In this report general features of life table calcu-
lations based on random walks and Kolmogorov-
Fokker-Planck equations are discussed. Several
schemes for numerical forecasting for different re-
gression formulas (one-year and two-year) and dif-
ferent schemes for filling in of missing data are de-
veloped.

Another approach is presented based on the the-
ory of stochastic processes. A scheme for using
stochastic processes for numerical predictions is de-
veloped and discussed. A life time generator pro-
viding simulated data is constructed and is used for
numerical and analytical tests.

Possible non-linear effects are also discussed by
generalizing the dynamic to include additional fac-
tor with non-linear, field dependence and chaotic
effects .
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